**New Scientist**

But all this attention only led Heim to retreat from the public eye. This was partly because of his severe multiple disabilities, caused by a lab accident when he was still in his teens. But Heim was also reluctant to disclose his theory without an experiment to prove it. He never learned English because he did not want his work to leave the country. As a result, very few people knew about his work and no one came up with the necessary research funding. In 1958 the aerospace company Bölkow did offer some money, but not enough to do the proposed experiment.

While Heim waited for more money to come in, the company’s director, Ludwig Bölkow, encouraged him to develop his theory further. Heim took his advice, and one of the results was a theorem that led to a series of formulae for calculating the masses of the fundamental particles – something conventional theories have conspicuously failed to achieve. He outlined this work in 1977 in the Max Planck Institute’s journal *Zeitschrift für Naturforschung*, his only peer-reviewed paper. In an abstruse way that few physicists even claim to understand, the formulae work out a particle’s mass starting from physical characteristics, such as its charge and angular momentum.

Yet the theorem has proved surprisingly powerful. The standard model of physics, which is generally accepted as the best available theory of elementary particles, is incapable of predicting a particle’s mass. Even the accepted means of estimating mass theoretically, known as lattice quantum chromodynamics, only gets to between 1 and 10 per cent of the experimental values.

**Gravity reduction**

But in 1982, when researchers at the German Electron Synchrotron (DESY) in Hamburg implemented Heim’s mass theorem in a computer program, it predicted masses of fundamental particles that matched the measured values to within the accuracy of experimental error. If they are let down by anything, it is the precision to which we know the values of the fundamental constants. Two years after Heim’s death in 2001, his long-term collaborator Illobrand von Ludwiger calculated the mass formula using a more accurate gravitational constant. “The masses came out even more precise,” he says.

After publishing the mass formulae, Heim never really looked at hyperspace propulsion again. Instead, in response to requests for more information about the theory behind the mass predictions, he spent all his time detailing his ideas in three books published in German. It was only in 1980, when the first of his books came to the attention of a retired Austrian patent officer called Walter Dröscher, that the hyperspace propulsion idea came back to life. Dröscher looked again at Heim’s ideas and produced an “extended” version, resurrecting the dimensions that Heim originally discarded. The result is “Heim-Dröscher space”, a mathematical description of an eight-dimensional universe.

From this, Dröscher claims, you can derive the four forces known in physics: the gravitational and electromagnetic forces, and the strong and weak nuclear forces. But there’s more to it than that. “If Heim’s picture is to make sense,” Dröscher says, “we are forced to postulate two more fundamental forces.” These are, Dröscher claims, related to the familiar gravitational force: one is a repulsive anti-gravity similar to the dark energy that appears to be causing the universe’s expansion to accelerate. And the other might be used to accelerate a spacecraft without any rocket fuel.

This force is a result of the interaction of Heim’s fifth and sixth dimensions and the extra dimensions that Dröscher introduced. It produces pairs of “gravitophotons”, particles that mediate the interconversion of electromagnetic and gravitational energy. Dröscher teamed up with Jochem Häuser, a physicist and professor of computer science at the University of Applied Sciences in Salzgitter, Germany, to turn the theoretical framework into a proposal for an experimental test. The paper they produced, “Guidelines for a space propulsion device based on Heim’s quantum theory”, is what won the AIAA’s award last year.

Claims of the possibility of “gravity reduction” or “anti-gravity” induced by magnetic fields have been investigated by NASA before (New Scientist, 12 January 2002, p 24). But this one, Dröscher insists, is different. “Our theory is not about anti-gravity. It’s about completely new fields with new properties,” he says. And he and Häuser have suggested an experiment to prove it.

This will require a huge rotating ring placed above a superconducting coil to create an intense magnetic field. With a large enough current in the coil, and a large enough magnetic field, Dröscher claims the electromagnetic force can reduce the gravitational pull on the ring to the point where it floats free. Dröscher and Häuser say that to completely counter Earth’s pull on a 150-tonne spacecraft a magnetic field of around 25 tesla would be needed. While that’s 500,000 times the strength of Earth’s magnetic field, pulsed magnets briefly reach field strengths up to 80 tesla. And Dröscher and Häuser go further. With a faster-spinning ring and an even stronger magnetic field, gravitophotons would interact with conventional gravity to produce a repulsive anti-gravity force, they suggest.

heim allowed for a differing feild equations i remember long ago that maxwells feild equations were adjusted to suit eienstien in our space time but originally suited 8 speed of light dimention.or rather feild equations now 8* speed of light occures in heim on matter? time dimentions are different and feilds , also mentioned,that things like this can,co extential…can co exist.that friction on space time may allow for other spacetimes.and other matter quintesences.matter creation and zero point.where matter pops into existence in the form of energy fields on space time matter = twisted feilds on manofold?”or space frabric.

matter.higgs , matter feild particals predictions,bosons .ect.space time speeding up..that other feild particals push, i also remember that there have been like paticals found ,,gravity, in feild colliders.

complexity should be very testable,as this is….whole or opened in this theory and ajustable.ultimately testable.